C’est mieux. Plus puissant, taoua. Et puis comme chaque matin, genre vers 9 heures, j’avais déjà épuisé mon crédit de 3.5. Alors, forcément, maintenant, je m’en sers pour absolument TOUT. Sauf un truc : écrire des textes pour mon blog. Pourvu que ça dure.
😃
Étiquette : chatgpt
Est-ce que c’est déjà plié pour Google ?
Alors dans le monde, je sais pas (et je m’en fous) mais à titre perso, ayé : je viens de supprimer mon Google agenda. Depuis début Juillet, je ne bosse pratiquement plus qu’avec Chat GPT et j’ai viré Gmail en début d’année. Bon débarras. Trop, c’est trop.
Et Dieu sait si depuis plus de 10 ans je dis ici-même le plus grand bien de Google et de ses services. En fait, on commence tous plus ou moins à bien sentir qu’ils nous enfument depuis quelques années. La goutte d’eau est partie d’une simple réflexion de ma chère et tendre épouse sur le bien-fondé d’acquérir éventuellement pour l’été une nouvelle petite table de jardin avec 4 chaises. Bon, après 15 années de bons et loyaux services, faut reconnaître que c’était pas du luxe. Bref. Je tape innocemment dans Google « tables de jardins » et là, eh bien j’ai vécu l’enfer que tout le monde connaît parfaitement : Gmail gavasse de pub à la con de chaises, de tables, le Google agenda, mon site d’échecs, Facebook, etc. Smiley qui vomit.
La bonne nouvelle c’est – donc – qu’il existe aujourd’hui des alternatives à Google qui ne sont pas invasives à ce point. En voici très concrètement deux :
– Mailo.com
Pour la messagerie et l’agenda. Il ont une formule gratuite que j’ai testé 4 mois et qui fonctionne très bien. Je suis passé à la payante, c’est 1 ou 2 Euros par mois.
– Chat GPT
Remplace avantageusement Google sur pratiquement tous les points. Je travaille avec depuis décembre 2022 et j’en suis très très satisfait. Gratuit.
Je sais qu’il existe bien entendu des dizaines de milliers d’autres services plus ou moins compétitifs, mais je ne parle sur mon blog que des trucs que je teste en vrai depuis plus de 6 mois à titre perso. Voilà.
Et bye bye Google.
Algorithme et intelligence artificielle : quelle différence ?
C’est clair, l’intelligence artificielle s’invite de plus en plus dans les discussions. Mais sait-on réellement de quoi il s’agit ? Si les applications alimentées par l’IA sont désormais très nombreuses, il existe encore une confusion entre l’intelligence artificielle et les algorithmes. Pour cette raison, je vous propose de vous aider à y voir plus clair. Avant de nous pencher sur l’intelligence artificielle, essayons de préciser ce qu’est un algorithme.
Algorithme : de quoi s’agit-il ?
Un algorithme est un ensemble de règles qui doivent être suivies afin d’accomplir une tâche ou de résoudre un problème. Contrairement aux apparences, les humains se servaient des algorithmes bien avant l’émergence de l’outil informatique. En effet, les recettes de cuisine et les opérations mathématiques sont des algorithmes, car elles suivent un processus par étapes pour aboutir à un résultat. Un métier à tisser est également un algorithme.
En informatique, les algorithmes sont considérés comme des instructions qui aident l’ordinateur à accomplir des tâches bien spécifiques. Ils jouent également un rôle majeur dans le fonctionnement des réseaux sociaux. C’est grâce à eux que s’affichent l’actualité ou les publicités qui vous sont proposées. Les algorithmes sont aussi essentiels pour les moteurs de recherche. En effet, ils permettent d’optimiser la recherche, mais aussi de prédire ce que l’internaute va taper.
La pensée algorithmique est utile dans de nombreux domaines. À l’heure de la Data Science, de l’intelligence artificielle et du Machine Learning, les algorithmes représentent ainsi un élément clé dans la nouvelle révolution industrielle qui a lieu.
Les algorithmes utilisés dans l’intelligence artificielle sont des algorithmes spécifiques dont les modèles produits évoluent en fonction des données qui leurs sont fournies et dont ils se « nourrissent ».
Intelligence artificielle : définition
Différente de l’intelligence humaine, l’intelligence artificielle (IA) aide à concevoir des dispositifs et des systèmes capables de résoudre des problèmes comme le ferait un humain. Par conséquent, l’intelligence artificielle revient à demander à une machine d’imiter le raisonnement humain.
Machine Learning : de quoi s’agit-il ?
Le Machine Learning ou – je préfère – apprentissage automatique est un sous-ensemble de l’IA. Cette technologie permet aux machines de reconnaître les données et de les mettre à la disposition d’applications qui utilisent l’IA.
L’idée qui se cache derrière l’apprentissage automatique est d’introduire un grand nombre de données dans des algorithmes (ou modèles) et de laisser les choses se faire. Le Machine Learning est à l’origine du développement d’un grand nombre de services comme le système de recommandation de Netflix, de YouTube ou de Spotify.
Deep Learning : c’est quoi ?
Sous-domaine du Machine Learning, le Deep Learning ou apprentissage en profondeur offre la possibilité de créer des systèmes capables d’apprendre, de prévoir et de décider en parfaite autonomie. Cette forme d’intelligence artificielle fonctionne grâce à des algorithmes qui imitent le cerveau humain. Pour y arriver, ils utilisent un large réseau de neurones artificiels.
Ce réseau est composé de plusieurs couches qui sont interconnectées. La première correspond aux neurones d’entrée tandis que la dernière aide à transmettre le résultat final. Entre ces deux couches se trouvent plusieurs autres qui permettent de traiter l’information. Une telle architecture est propre au Deep Learning et contribue à une analyse plus précise des données d’entrée.
Plus le réseau de neurones est profond, plus le système est en mesure d’effectuer des tâches complexes. Lorsqu’une information est traitée, les connexions entre les neurones s’étendent, ce qui offre la possibilité d’améliorer les décisions. Aujourd’hui, cette technique est utilisée pour analyser des images, créer du contenu textuel ou améliorer la cybersécurité de vos clients si vous évoluez dans ce domaine. C’est grâce au Deep Learning que ChatGPT s’est développé il y a quelques années pour devenir une référence IA de nos jours.
En résumé
L’algorithmique sous-tend l’intelligence artificielle, le Machine Learning et le Deep Learning qui sont étroitement liés. Chacun possède toutefois des caractéristiques bien distinctes. L’IA permet aux ordinateurs, aux machines et aux robots d’imiter l’être humain lors de la prise de décisions ou dans la résolution de problèmes. Quant au Machine Learning, il est centré sur la création d’applications qui arrivent à apprendre en se basant sur des données. Enfin, le Deep Learning offre la possibilité aux ordinateurs de résoudre des problèmes très complexes.
—
Source + intégralité de l’article : https://www.datasulting.com/articles/algorithme-intelligence-artificielle-machine-learning-deep-learning-quelle-difference/